Succession, Climax, and Ecosystems
In the late nineteenth century, ecology began to grow into an independent science from its roots in natural history and plant geography. The emphasis of this new “community ecology” was on the composition and structure of communities consisting of different species. In the early twentieth century, the American ecologist Frederic Clements pointed out that a succession of plant communities would develop after a disturbance such as a volcanic eruption, heavy flood, or forest fire. An abandoned field, for instance, will be invaded successively by herbaceous plants (plants with little or no woody tissue), shrubs, and trees, eventually becoming a forest. Light-loving species are always among the first invaders, while shade-tolerant species appear later in the succession.
Clements and other early ecologists saw almost lawlike regularity in the order of succession, but that has not been substantiated. A general trend can be recognized, but the details are usually unpredictable. Succession is influenced by many factors: the nature of the soil, exposure to sun and wind, regularity of precipitation, chance colonizations, and many other random processes.
The final stage of a succession, called the climax by Clements and early ecologists, is likewise not predictable or of uniform composition. There is usually a good deal of turnover in species composition, even in a mature community. The nature of the climax is influenced by the same factors that influenced succession. Nevertheless, mature natural environments are usually in equilibrium. They change relatively little through time unless the environment itself changes.
For Clements, the climax was a “superorganism,” an organic entity. Even some authors who accepted the climax concept rejected Clements’ characterization of it as a superorganism, and it is indeed a misleading metaphor. An ant colony may be legitimately called a superorganism because its communication system is so highly organized that the colony always works as a whole and appropriately according to the circumstances. But there is no evidence for such an interacting communicative network in a climax plant formation. Many authors prefer the term “association” to the term “community” in order to stress the looseness of the interaction.
完整版题目和答案请付费后查阅: